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cremental indentation step. This fact has been stated in the
first paragraph of the introduction of Ref. 2 with a typical
stress-strain curve for material with strain hardening and the
implications that arise from the relative amount of incre-
mental loading and the slope of the stress-strain curve,
therefore, the degree of positive definiteness of the stiffness
matrix obtained has been explained with reference to Fig. 2;
and one method of diagnosis for ill behavior of the stiffness
matrix has been explained with reference to Fig. 3 on page
1827 of Ref. 2.
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Recalling that

= K0 - Ks = -Ks, = 0

and noting that, very accurately, independent of the wall-
to-stagnation temperature ratio,

KsHiTs ^ -0.275, -1 <SV<1

one obtains, upon substitution into Eq. (2),

X = 1.288(1 - #tro/#trs)1/2 (3)

Therefore, X is a function of the ratio of the transformed
form factor at the beginning of the interaction and at the
point of incipient separation. Finally, it is noted that the
ratio Htr0/HiTs increases nonlinearly with Sw only through
#trs since Htr0 = 2.591 (Sw + 1), HiTs being inversely pro-
portional to the pressure gradient at separation.
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A Further Note on Laminar
Incipient Separation

K. O. W. BALL*
Systems Research Laboratories Inc., Dayton, Ohio

Nomenclature

H = boundary-layer form factor
K = pressure gradient parameter
M = Mach number
Sw = total enthalpy function
T = temperature
T = shear stress
Oi = incipient compression surface deflection angle
% = viscous interaction parameter

Subscripts
o = flat plate, i.e., K0 = 0
s = separation, i.e., TW = 0
tr = transformed
w — wall

REFERENCE 1 presented the effect of wall temperature on
the incipient deflection angle, 6i} i.e., that angle which the

laminar boundary layer can negotiate without separating.
The wall temperature was shown to enter into the valuation
of X in the equation

, = Xvl/2 (1)

where

Although X may be evaluated accurately through Eq. (2)
by making use of the similar solutions of Ref. 2, its physical
significance was not apparent.
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Comment on "Exact Solution of
Certain Problems by Finite

Element Method"

CARLOS A. PRATO*
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IN his recent Note, Tong1 proved that when the exact solu-
tion to the homogeneous Euler Equations of a positive

definite functional2 with one independent variable is known,
and it is used as interpolation functions in the variational
formulation of the finite element equations, the generalized
displacements which are the solution to these equations con-
stitute the exact solution to the problem at the nodal points
regardless of the number or size of the elements used in the
discretization. This property is often used in many one-
dimensional problems and also in two-dimensions when a
separation of variables is applicable. Typical problems of
this kind are those concerning continuous beams, frame struc-
tures, some plate problems, and axisymmetric shells of
revolution.

It is of interest to note, however, that an alternate deriva-
tion of the finite element equations has been used by en-
gineers before the advent of the finite element method as
such. If the generalized displacements are defined as the
displacements at the element ends, the Euler Equations of
the appropriate functional are equilibrium equations at the
same points. In Tong's Note these are given in matrix form
in Eq. (8). Obviously the entries of the stiffness matrix K
are the end forces corresponding to unit values of the end dis-
placements, and they can be obtained from the general solu-
tion to the homogeneous equations. Thus, when these end
forces are obtained from the exact general solution, they are
exact too.

Then, it remains to prove that the generalized forces in
Eq. (8), Q, are also exact. The generalized forces are defined
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