

cremental indentation step. This fact has been stated in the first paragraph of the introduction of Ref. 2 with a typical stress-strain curve for material with strain hardening and the implications that arise from the relative amount of incremental loading and the slope of the stress-strain curve, therefore, the degree of positive definiteness of the stiffness matrix obtained has been explained with reference to Fig. 2; and one method of diagnosis for ill behavior of the stiffness matrix has been explained with reference to Fig. 3 on page 1827 of Ref. 2.

References

- 1 Swedlow, J. L., "Solving Problems of Elastoplastic Flow," *AIAA Journal*, Vol. 7, No. 6, June 1969, p. 1214.
- 2 Akyuz, F. A. and Merwin, J. E., "Solution of Nonlinear Problems of Elastoplasticity by Finite Element Method," *AIAA Journal*, Vol. 6, No. 10, Oct. 1968, pp. 1825-1831.
- 3 Hill, R., *The Mathematical Theory of Plasticity*, Oxford University Press, New York, 1956, pp. 14-15.
- 4 Turner, M. J. et al., "Large Deflection of the Structures Subjected to Heating and External Load," *Journal of the Aerospace Sciences*, Vol. 27, No. 2, Feb. 1960, pp. 97-107.
- 5 Wilson, E. L., "Finite Element Analysis of Two-Dimensional Structures," Rept. 63-2, June 1962, Structural Engineering Lab., University of California, Berkeley, Calif.
- 6 Fraejis de Veubeke, B., *Matrix Methods of Structural Analysis*, Macmillan, New York, 1964, pp. 332-333.

A Further Note on Laminar Incipient Separation

K. O. W. BALL*

Systems Research Laboratories Inc., Dayton, Ohio

Nomenclature

- H = boundary-layer form factor
 K = pressure gradient parameter
 M = Mach number
 S_w = total enthalpy function
 T = temperature
 τ = shear stress
 θ_i = incipient compression surface deflection angle
 \bar{x} = viscous interaction parameter

Subscripts

- o = flat plate, i.e., $K_o = 0$
 s = separation, i.e., $\tau_w = 0$
 tr = transformed
 w = wall

REFERENCE 1 presented the effect of wall temperature on the incipient deflection angle, θ_i , i.e., that angle which the laminar boundary layer can negotiate without separating. The wall temperature was shown to enter into the valuation of λ in the equation

$$M\theta_i = \lambda \bar{x}^{1/2} \quad (1)$$

where

$$\lambda = -2.45K_s (-\Delta H_{tr}/\Delta K)^{1/2} \quad (2)$$

Although λ may be evaluated accurately through Eq. (2) by making use of the similar solutions of Ref. 2, its physical significance was not apparent.

Received January 20, 1969. This work was partially supported by the Aerospace Research Laboratories, Office of Aerospace Research, U.S. Air Force, Wright-Patterson Air Force Base, Ohio, under Contract AF33(615)-2175, Project 7065.

* Staff Scientist, Aerospace Sciences Division. Member AIAA.

Recalling that

$$\Delta H_{tr} \equiv H_{tr_s} - H_{tr_o}$$

$$\Delta K \equiv K_o - K_s = -K_s, K_o = 0$$

and noting that, very accurately, independent of the wall-to-stagnation temperature ratio,

$$K_s H_{tr_s} \cong -0.275, -1 \leq S_w \leq 1$$

one obtains, upon substitution into Eq. (2),

$$\lambda = 1.288(1 - H_{tr_o}/H_{tr_s})^{1/2} \quad (3)$$

Therefore, λ is a function of the ratio of the transformed form factor at the beginning of the interaction and at the point of incipient separation. Finally, it is noted that the ratio H_{tr_o}/H_{tr_s} increases nonlinearly with S_w only through H_{tr_s} since $H_{tr_o} = 2.591 (S_w + 1)$, H_{tr_s} being inversely proportional to the pressure gradient at separation.

References

- 1 Ball, K. O. W., "Wall Temperature Effect on Incipient Separation," *AIAA Journal*, Vol. 5, No. 12, Dec. 1967, pp. 2283-2285.
- 2 Cohen, C. B. and Reshotko, E., "Similar Solutions for the Compressible Laminar Boundary Layer with Heat Transfer and Pressure Gradient," Rept. 1293, 1954, NACA.

Comment on "Exact Solution of Certain Problems by Finite Element Method"

CARLOS A. PRATO*

Massachusetts Institute of Technology, Cambridge, Mass.

IN his recent Note, Tong¹ proved that when the exact solution to the homogeneous Euler Equations of a positive definite functional² with one independent variable is known, and it is used as interpolation functions in the variational formulation of the finite element equations, the generalized displacements which are the solution to these equations constitute the exact solution to the problem at the nodal points regardless of the number or size of the elements used in the discretization. This property is often used in many one-dimensional problems and also in two-dimensions when a separation of variables is applicable. Typical problems of this kind are those concerning continuous beams, frame structures, some plate problems, and axisymmetric shells of revolution.

It is of interest to note, however, that an alternate derivation of the finite element equations has been used by engineers before the advent of the finite element method as such. If the generalized displacements are defined as the displacements at the element ends, the Euler Equations of the appropriate functional are equilibrium equations at the same points. In Tong's Note these are given in matrix form in Eq. (8). Obviously the entries of the stiffness matrix \mathbf{K} are the end forces corresponding to unit values of the end displacements, and they can be obtained from the general solution to the homogeneous equations. Thus, when these end forces are obtained from the exact general solution, they are exact too.

Then, it remains to prove that the generalized forces in Eq. (8), \mathbf{Q} , are also exact. The generalized forces are defined

Received January 29, 1969.

* Research Associate, Department of Civil Engineering. Also Senior Staff Engineer at Simpson, Gumpertz & Heger, Cambridge, Mass.